Kinetis 平台的电容式触摸键盘设计
触控技术目前来讲主要分为电阻式触控和电容式触控,作为近年来飞速发展的新技术,电容式触控感应技术以其无机械损耗、寿命长、灵敏度高、节省空间和触摸动作丰富等优点得到越来越广泛的应用,与此同时,半导体厂商也不断地推出相应技术的IC以简化硬件设计人员的开发。
飞思卡尔半导体推出的Kinetis系列MCU架构之中嵌入了高性能的电容式触摸感应接口TSI模块,增强了电容触摸感应的稳定性和鲁棒性,同时也极大地简化了设计人员的开发过程。
电容式触摸感应原理
目前基于IC设计的电容式触摸感应技术主要有两种:
一种是把电容值的变化转换成电压的变化,再通过内部特殊的电容模数转换器经过A/D采样算出电容量;
另一种是把电容值变化转换成内部计数器计数值的变化,在外部电极上产生三角波充放电电压信号,通过对该三角波电压信号的周期进行测量计数来反映外部电极的电容量变化。
SiliconLabs推出的电容触摸系列MCU采用的是前一种方法。
Kinetis K60内部集成的TSI模块采用的则是后面一种方法。
TSI模块通过内部的恒流源对外部电极进行充放电,形成三角波电压信号。三角波电压信号的周期随着外部电容的变化而变化,而手指作为虚拟地靠近电极时会造成电容容量的增加,使三角波电压信号周期变长。与此同时,TSI模块内部还有一个固定容量的电容构成的振荡器,以其产生的参考时钟节拍对外部电极产生的三角波电压信号的周期进行计数,外部电极电容量的变化引起三角波电压信号周期的变化进而引起测量计数值的变化,再通过内部读取相应的计数器值即可算出电容量变化。根据TSI内部运行机制,当电容值超出设定的触发阈值时,TSI触发标志位激活相应的中断请求,实现电容触摸感应事件的响应。
系统硬件设计
由于采用了带有专用电容触控功能即TSI模块的MCU,因此简化了硬件电路的设计。一方面减少了开发成本,另一方面也降低了硬件电路的复杂性,增强了系统的稳定性和鲁棒性。
1.电容触控接口设计