EDN China > 设计实例 > 工业电子 > 检测与传感 > 正文
? 2016博客大赛-不限主题,寻找电子导师,大奖升级??

四足机器人中多传感器信息融合的应用

张天?? 杨晨曦?? 朱颖?? 宋明辉?? 张地?? 北京理工大学 传感器与微系统?? 2015年07月08日 ?? 收藏1

3 参数确定

基于双目视觉传感器和超声测距传感器,在CV 模型下应用卡尔曼滤波算法,可以得到两组状态向量的估计值多传感器信息融合在机器人中的应用多传感器信息融合在机器人中的应用,以及相应的协方差矩阵P1和P2,由于以上两组数据来自两个不同的传感器系统,故满足P12 = P21T≈0 这一条件,可以使用STF 融合算法得到整个系统的状态向量和协方差矩阵的最佳估计值多传感器信息融合在机器人中的应用 和P。为此,需要确定以下参数,系统的过程噪声标准差σw,双目视觉传感器的量测噪声标准差σv1,超声测距传感器的量测噪声标准差σv2和卡尔曼滤波算法的初始值。下面结合仿生四足机器人的实际情况,确定以上参数。

3.1 确定系统的过程噪声标准差

由于在机械结构设计和装配过程中产生的误差,使得仿生四足机器人在Walk 步态下行走时,并不是理论上以0.4 m/s的速度做匀速直线运动,而是在做变速直线运动,系统的过程噪声标准差是机器人在Walk 步态下行走时的加速度值。下面介绍获取该加速度值的方法。

在Adams 仿真软件中,建立仿生四足机器人的运动学模型,如图1 所示。在仿生四足机器人机体的质心处建立一个前进方向的加速度测量,运行仿真,打开Adams 仿真软件的后处理器,对获得的加速度曲线进行巴特沃斯滤波,然后计算加速度的平均值,将其作为该次仿真的加速度值。重复进行50 次,得到50 个加速度值,求出标准差,即为系统的过程噪声标准差。图2 为某次仿真中的加速度曲线。最终求出系统的过程噪声标准差为0.012 m/s2 ,即σw=0.012 m/s2。

图1 Adams 中机器人的运动学模型
图1 Adams 中机器人的运动学模型

图2 加速度曲线
图2 加速度曲线

3.2 确定传感器的量测噪声标准差

对于传感器的量测噪声标准差,在仿真情况下,可以由其测量误差来反映。

在实际应用中,利用两个CCD 摄像机获取视差信息,再根据三角测量原理恢复出场景的深度信息,如此即可测量出障碍物与机器人之间的距离信息,然而,由于CCD 摄像机所拍摄的图像是以像元大小为单位的一组离散的数据,故在用双目视觉进行测量时存在最小分辨率误差,仿生四足机器人上搭载的双目视觉传感器的测量误差约为6.8 cm,即σv1 = 0.068 m。

超声测距传感器的发射头发出超声波信号,此信号被障碍物反射后,由接收头接收,根据发射和接收到信号的时间差和声速,即可得到障碍物的距离信息。当探测范围内有目标物体之外的物体存在时,会产生测量误差。仿生四足机器人上搭载的超声测距传感器的测量误差为1 cm,即σv2 = 0.01 m。

3.3 确定卡尔曼滤波算法的初始值

卡尔曼滤波算法作为一个迭代过程,需要赋予其初值,初值的选择至关重要,如果初值选择不合适,就不能满足收敛性的要求。在CV 模型中,P(0|0) 的确定方法已经由模型给出,这里只需给出X(0|0) 的取值,本文中取X(0|0) =[10,- 0.4]'。

【分页导航】


?? ?? ??


打开微信“扫一扫”,打开网页后点击屏幕右上角分享按钮

1.扫描左侧二维码
2.点击右上角的分享按钮
3.选择分享给朋友
?? ??

四足机器人? 多传感器信息融合? 卡尔曼滤波算法? 机器人避障?

相关文章

我来评论
美国的游客
美国的游客 ??? (您将以游客身份发表,请登录 | 注册)
?
有问题请反馈