EDN China > 技术文章 > 微处理器与DSP > DSP应用 > 正文
? 2016博客大赛-不限主题,寻找电子导师,大奖升级??

使用FPGA器件最大限度地降低高速DSP密集型系统设计的功耗

Govind Krishnan?? Hichem Belhadj?? Madhubabu Anumukonda?? Microsemi?? 2015年07月07日 ?? 收藏1
对于高速的DSP密集型系统设计,降低功率变得越来越重要。例如,在通信系统中,通信必须以周期猝发方式来实施,以避免放大器和系统其余部分电路持续消耗功率。在传感器网络中的要求是定期关断工作的传感器(比如用于交通图像或天气传感器),或者定期打开它们(例如在地震情况下),以及在设备回到睡眠模式之前以猝发方式上传信息。在通常具有相对较低取样频率的医疗监测设备中,需要通过实施周期性操作其低功耗特性的方式来最大限度减少功耗,相似的,手持便携式解决方案也是如此。

对于着重降低功率的DSP密集型系统设计,设计人员不仅仅是要提供最低的静态功率,更重要的是需要专注于实现尽可能低的总体功耗,尤其是在高频率和高温条件下。现场可编程门阵列(FPGA)通过综合的方法来实现功耗最小化,有助于达到这个目标。这种方法包括加工工艺、架构和逻辑配置设计,以及包括SERDES、DDR2/3和DSP模块的嵌入式特性,同时还加入了进一步降低静态功耗的特殊功率模式。本文重点讨论在低功率DSP密集型系统设计中应对DSP挑战的FPGA技术演进。

FPGA演进

在过去二十年里,许多先进的CPU和MCU构建了各种节能模式,以应对DSP密集型设计中较高频率和集成度水平引起的功耗难题。仅有最先进的FPGA器件提供了类似的低功耗能力,并且支持更高频率器件。直至最近才出现可以解决早期基于SRAM解决方案的泄漏问题,同时带有低功耗模式实现额外节能能力的FPGA器件。

大体上,静态功率、动态功率,以及浪涌功率这三种功率成分左右了总体功耗,这与FPGA功率预算相关。必需有效地管理这三种成分以实现最低功耗。

管理这些功率成分需要固有低泄漏电流——这是FPGA器件支持DSP密集设计之功率需求的一个重要特性。与使用SRAM单元的FPGA器件相比,基于flash的FPGA解决方案具有优势,这是因为基于flash的 FPGA使用单一(而不是六个)晶体管来构建,而且配置功率和浪涌功率(上电期间)均为零。SRAM FPGA上电处于未配置状态,必需完成初始上电复位顺序。首先,各个配置位处于未知状态,并且必需在每个电源周期初始化。因此,产生了高至数安培或长至数百微秒之尖峰的浪涌电流,这带来了浪涌功率(请参见图1)。

图1:使用基于flash的FPGA器件,可以在器件启动和配置阶段省去数百微瓦(mW)功率。为了避免大电流峰值,SRAM FPGA需要复杂的上电排序,因此增加了元器件成本和占位面积。
图1:使用基于flash的FPGA器件,可以在器件启动和配置阶段省去数百微瓦(mW)功率。为了避免大电流峰值,SRAM FPGA需要复杂的上电排序,因此增加了元器件成本和占位面积。

为了缓减这个尖峰电流,许多SRAM FPGA器件也都具有附加的复杂系统上电顺序要求。而基于flash的非易失性 FPGA无需外部配置器件来进行重新编程,在启动阶段省去了数百微瓦(mW),并且省去了用于缓减尖峰电流的外部器件。在某些情况下,与基于SRAM的解决方案相比,基于flash的FPGA可以把每单元泄漏电流降低1000倍,并且具有超低静态电流和无需外部缓减器件的优势。

基于flash的 FPGA器件除了固有较低功率之外,还可以利用附加的特性以进一步减小功率。基于flash的 FPGA器件在单一芯片上结合了硬IP模块和FPGA架构,并且这个FGPA集成了功能齐全的微控制器系统、增强的FPGA架构和高速串行和存储器接口。附加的功率敏感特性和其它特性包括:

增强的SERDES功能:最新FPGA的每个SERDES通道的每Gbps功率降低至13mW,与具有相似功能的其它FPGA解决方案相比,可以降低多达5倍(参见图2)。

在较小的器件中集成许多不同的硬IP和其它资源:通过加入更多I/O、收发器、PCI Express端点和高性能存储器子系统,可以在更小、功率更低的器件中提供更多功能。

嵌入式RAM和数学模块:基于flash 的 FPGA器件包括内建的硬RAM模块和数学模块,用于密集型DSP应用。而且,这些模块在低功率下提供高性能水平。图3所示为不同FPGA制造商之间的RAM功率比较。

固有低功率的嵌入式处理器子系统:某些子系统提供多种低功率模式,包括睡眠模式和深度睡眠模式,使用低功率模式可以实现FPGA架构和相关I/O的快速停止和启动,同时保存FPGA架构的状态,并且显著降低功耗。器件大约花100ms来进入睡眠模式,再花大约100ms退出这个模式。然而,FPGA退出睡眠模式的状态可以保存,该器件从其退出的状态继续运作。

使用附加的工具来最大限度地减小功率:通过使用各种工具来计算功率配置,以及使用智能floor-planning和功率优化布局布线,用户能够进一步优化其设计以降低功耗。

图2: 来自主要FPGA制造商的SERDES功耗数值
图2: 来自主要FPGA制造商的SERDES功耗数值

图3: 来自主要FPGA制造商的存储器和数学模块功耗数值
图3: 来自主要FPGA制造商的存储器和数学模块功耗数值

所有这些降低功率的特性和功能,在高速DSP密集型系统设计中特别重要。

下一页:DSP设计的挑战,下一代高速DSP密集型系统设计的重要因素

《电子技术设计》网站版权所有,谢绝转载。


上一页12下一页
?? ?? ??


打开微信“扫一扫”,打开网页后点击屏幕右上角分享按钮

1.扫描左侧二维码
2.点击右上角的分享按钮
3.选择分享给朋友
?? ??

DSP密集型系统? FPGA?

相关文章

我来评论
美国的游客
美国的游客 ??? (您将以游客身份发表,请登录 | 注册)
?
有问题请反馈