EDN China > 设计实例 > 微处理器与DSP > CPU/GPU > 正文
? 2016博客大赛-不限主题,寻找电子导师,大奖升级??

(多图)LEON3开源软核处理器动态图像边缘检测SoC设计

李贞妮?? 李晶皎?? 李亮?? 东北大学信息科学与工程学院?? 2015年04月16日 ?? 收藏0

3 动态图像边缘检测SoC的实现

本设计提出了一种集图像采集、存储、处理和显示于一个IP核的设计方法,也是动态图像边缘检测SoC设计的核心部分。

3.1 局部熵算法的硬件实现

局部熵边缘检测算法的基本思想是:选择待处理像素点的8邻域,即以待处理像素点为中心的3×3窗口;再由局部熵的定义式(公式1)计算出图像3×3窗口的局部熵;

LEON3处理器动态图像边缘检测的SoC设计

然后通过与给定的阈值进行比较,得到二值化图像,即可得出图像的边缘。硬件实现的处理过程为流水线方式,处理的对象为3×3大小的图像窗口。具体步骤如下:

①3×3窗口的产生。3×3窗口主要通过片上缓存和延时单元实现。图2是以经过3个时钟为例说明了同步产生3×3窗口中一行数据的过程。

图2 同步数据的产生
图2 同步数据的产生

②熵值的计算。将步骤1中得到的3×3窗口的9个并行数据途经两路进行处理。对于3×3窗口,式(1)化简为式(2):

LEON3处理器动态图像边缘检测的SoC设计

3×3窗口的9路并行数据,一边送去做并行相加求和,再求平方,作为除法运算的分母;同时把9个数据分别求平方,再求合,作为除法运算的分子。在做除法运算前,为确保其计算精度,要先将分子与分母转换成IEEE-745浮点数后再进行浮点除法运算。最后还要把除法运算的结算转换成整数,考虑到除法运算的结果可能小于1,于是在转换整数前放大1000倍,即保留3位有小数有效位,最后将转换后的整数输出,至此实现了局部熵值的计算过程。局部熵值计算的硬件处理流程如图3所示:

图3局部熵值计算流程示意图
图3局部熵值计算流程示意图

③阈值比较及二值化处理。②中已经得到了放大1000倍后的熵值,在这里只需通过一个比较电路,当熵值大于阈值时,输出0;当熵值小于阈值时,输出1。这样就得到一幅二值化后的边缘图像。至此,完成了整个局部熵边缘检测算法的硬件实现。

【分页导航】


?? ?? ??


打开微信“扫一扫”,打开网页后点击屏幕右上角分享按钮

1.扫描左侧二维码
2.点击右上角的分享按钮
3.选择分享给朋友
?? ??

SOC? 动态图像边缘检测? 局部熵算法?

相关文章

我来评论
美国的游客
美国的游客 ??? (您将以游客身份发表,请登录 | 注册)
?
有问题请反馈