EDN China > 设计实例 > 工业电子 > 检测与传感 > 正文
? 2016博客大赛-不限主题,寻找电子导师,大奖升级??

(多图) 完全隔离式电导率测量数据采集系统

ADI?? 2015年01月15日 ?? 收藏4

电路设计

图2显示了电路中使用的电导率和温度测量的优化信号链。AD5934具有四个可编程输出电压范围。 每个范围都有对应的输出阻抗。 例如,1.98 V p-p输出电压的输出阻抗一般为200 Ω(参见AD5934数据手册)。 输出阻抗会影响阻抗测量精度,在低ohm范围内尤为突出。 在信号链内的简易缓冲器可防止输出阻抗影响未知的阻抗测量。 应选择低输出阻抗放大器,保证足够的带宽来适应AD5934的激励频率。 针对AD8605 /AD8606 /AD8608系列的CMOS运算放大器,能够实现的低输出阻抗示例如图2所示。 在增益为1时,此放大器的输出阻抗小于1 Ω(最高100 kHz),这是AD5934的最高工作范围。

图2. 电导率和温度测量的优化信号链
图2. 电导率和温度测量的优化信号链

AD5934中的四个可编程输出电压范围具有四个关联的偏置电压(参见AD5934数据手册)。例如,1.98 V p-p激励电压需要1.48 V的偏置。但是,AD5934的电流电压(I-V)接收级设置为固定偏压VDD/2。因此,对于3.3 V电源,发射偏压为1.48 V,而接收偏压为3.3 V/2 = 1.65 V。此电位差会引起测试溶液YX极化,并可导致电导率测量不准确。 一种解决方案是添加一个在低Hz范围内具有转折频率的简单高通滤波器(参见电路笔记CN-0217)。 消除发射级的直流偏置,并将交流信号重新偏置至VDD/2,在整个信号链中保持直流电平恒定。 R1和R5(10 kΩ)两者均使用精度0.1%的电阻作为偏置电阻以减少误差。

AD5934的I-V放大级还可能轻微增加信号链的误差。I-V转换级易受放大器的偏置电流、失调电压和共模抑制比(CMRR)影响。 通过选择适当的外部分立放大器(U2B)来执行I-V转换,可以提高精度。 选择AD8606的原因是该器件具有低失调电压(最大值65 μV)、低偏置电流(最大值1 pA)、高CMRR(通常为95 dB)、低噪声(最大值12 nV/√Hz)等特性。 该内部放大器随后可配置成一个简单的反相增益级。 如AN-1252应用笔记中所述,RFB仍根据系统的整体增益来选择。 I-V转换器的输入和输出必须精确偏置为VDD/2。R12和R13(10 kΩ)两者均使用精度0.1%的电阻作为偏置电阻。

精度很大程度上取决于未知阻抗范围(电导率范围)相对于校准电阻RCAL的大小幅度(参见电路笔记CN-0217和应用笔记AN-1252)。 选择接近未知阻抗的RCAL可实现更精确的测量,即以RCAL为中心的未知阻抗范围越小,测量精度越高。 因此,对于较大的未知阻抗范围,可在各种RCAL电阻之间切换,如图2中所示。在RCAL增益系数计算期间可通过校准消除开关的导通电阻(RON)误差。 使用不同反馈电阻(RFB)值(见图2)可优化ADC所获得信号动态范围。

为了改进图1中所示的大范围电导的精度,使用三个校准电阻RCAL(100 Ω、1 kΩ和10 kΩ)、两个反馈电阻RFB(100 Ω和10 kΩ),由软件和ADG715八通道开关控制。 电路设置为在两个范围内运行:

低范围: μS至mS,RFB = 1 kΩ,RCAL =1 kΩ和10 kΩ

低范围: μS至mS,RFB = 1 kΩ,RCAL =1 kΩ和10 kΩ

使用这两个范围,整体测量范围为25 μS t至200 mS,精度高于1% FSR,如测试数据所示。 可以选择RCAL和RFB的其他值以覆盖不同的范围。

CN-0349评估软件允许电路在三种模式下工作。 在模式1(图2中开关的位置1)中,低范围和高范围的校准程序都是自动执行的。 在模式2(图2中开关的位置2)中,溶液的温度测量使用外部Pt100 RTD温度传感器自动执行。 在模式3(图2中开关的位置3)中,测量溶液的实际电导率。

校准程序

对于图1显示的电路,校准程序使用三个精密电阻RCAL(R3 = 100 Ω、R4 = 1 kΩ和R7 = 10 kΩ)进行三点校准,最大程度地减小失调和增益误差,在每个范围内使系统线性化。 对于每个范围,校准程序在输入范围的开头和末尾执行,使用两个参考信号(校准电阻)YL和YH,如图3所示。参考信号的值预加载在微控制器的存储器中,也可以通过键盘输入。

对于低范围校准点,参考信号是YL(例如,YL = 1/R7 = 1/10 000 Ω = 0.1 mS)。 当参考信号YL连接时,将获取与参考信号YL相对应的代码NL(幅值ML)。 同样,对于高范围校准点,参考是信号YH(例如,YH = 1/R4 = 1/1000 Ω = 1 mS)。 当参考信号YH连接时,将获取与参考信号YH相对应的代码NH(幅值MH)。

图3. 电导率测量的两点校准
图3. 电导率测量的两点校准

然后按照公式1计算增益系数(GF)

然后按照公式1计算增益系数(GF) (1)

系统的失调(NOS)可通过参考图3确定,并按照公式2计算。

然后按照公式1计算增益系数(GF) (2)

在测量模式中,未知输入信号(YX)在代码(NX)中转换,并按照公式3计算。

然后按照公式1计算增益系数(GF) (3)

对于高范围,程序是相同的,但参考信号如下: YL = 1/R4 = 1/1000 Ω = 1 mS,YH = 1/R3 = 1/100 Ω = 10 mS。

为了在低电导范围(高电阻)内实现更宽的测量范围,我们使用AD5934的2 V p-p激励输出电压。 为了在高电导范围(低电阻)内扩大测量范围,在保持2 V p-p激励输出电压的同时,还串行连接了一个精密电阻R2 = 100 Ω,具有未知电导YX。 可以使用其他输出电压范围来优化高电导范围(低电阻)内的ADC动态范围。

【分页导航】

《电子技术设计》网站版权所有,谢绝转载


?? ?? ??


打开微信“扫一扫”,打开网页后点击屏幕右上角分享按钮

1.扫描左侧二维码
2.点击右上角的分享按钮
3.选择分享给朋友
?? ??

电导率测量? 数据采集? 阻抗转换器? 运算放大器?

相关文章

我来评论
美国的游客
美国的游客 ??? (您将以游客身份发表,请登录 | 注册)
?
有问题请反馈