EDN China > 设计实例 > 消费电子设计 > 音频处理 > 正文
? 2016博客大赛-不限主题,寻找电子导师,大奖升级??

(多图) MEMS麦克风的声学设计

Alessandro Morcelli?? 意法半导体(意大利)有限公司麦克风应用工程师?? John Widde?? 意法半导体有限公司音频和MEMS麦克风市场部?? 2014年07月18日 ?? 收藏0
前言

以高性能和小尺寸为特色的MEMS麦克风特别适用于平板电脑、笔记本电脑、智能手机等消费电子产品。不过,这些产品的麦克风声孔通常隐藏在产品内部,因此,设备厂商必须在外界与麦克风之间设计一个声音路径,以便将声音信号传送到MEMS麦克风振膜。这条声音路径的设计对系统总体性能的影响很大。



下图是一个典型的平板电脑的麦克风声音路径:

图1 – 典型应用示例
图1 – 典型应用示例

外界与麦克风振膜之间的声音路径由产品外壳、声学密封圈、印刷电路板和麦克风组成,这条声音路径起到波导作用,构建系统总体频响。此外,声音路径材质的声阻抗也会影响频响。若想准确预测声学设计的性能如何,需要建立声音路径模型,使用COMSOL等专业级仿真工具对声音路径的频响特性进行仿真实验。然而,本文为读者提供一些优化麦克风声音路径的基本原则。

Helmholtz谐振

狭窄的传声孔与空心腔室相连构成的结构在受到声波激励时会产生声学谐振。当我们对着空瓶的瓶嘴上方吹气时,就会发生这种谐振现象。这种结构叫做 Helmholtz谐振器,是以该现象的发明者Hermann von Helmholtz命名的。Helmholtz利用谐振频率不同的谐振器识别音乐等复杂声音内的频率成份。

Helmholtz谐振的中心频率是由下面的程式确定:

其中c是空气速度;AH是声孔的横截面积;LH是声孔的长度;VC是空腔的容积。该方程式假设谐振器是一个空腔和一条横截面均等的管道相连组成的简单结构。如果麦克风的声音路径的横截面积和材质不同,则描述声音路径的声波特性的方程式要复杂很多。因此,必须对整个声音路径进行声波特性仿真实验才能精确地预测声学设计的总体性能。

在本文内,通过改变麦克风密封圈的厚度和内径、产品外壳声孔直径、印刷电路板声孔直径、声音路径弯折和路径材质的声阻抗,我们对不同的声音路径进行了频响仿真实验。实验结果让设计人员能够预先掌握这些参数变化对声音路径总体性能的影响程度。

【分页导航】

《电子技术设计》网站版权所有,谢绝转载


上一页123456下一页
?? ?? ??


打开微信“扫一扫”,打开网页后点击屏幕右上角分享按钮

1.扫描左侧二维码
2.点击右上角的分享按钮
3.选择分享给朋友
?? ??

MEMS麦克风? 频响? 传感器? 谐振?

相关文章

我来评论
美国的游客
美国的游客 ??? (您将以游客身份发表,请登录 | 注册)
?
有问题请反馈