EDN China > 设计实例 > 测试与测量 > 虚拟仪器 > 正文
? 2016博客大赛-不限主题,寻找电子导师,大奖升级??

(多图) 基于LabVIEW和Matlab混合编程的小波去噪方法

/?? 2014年03月21日 ?? 收藏0
0 引言

信号降噪是信号处理领域的经典问题之一。传统的降噪方法主要包括线性滤波方法和非线性滤波方法,滤波器在工作时对信号进行筛选,只让特定频段的信号通过。当信号中的有用成分和噪声成分各占不同频带,可以将噪声成分有效除去。但如果信号和噪声的频谱重叠,则经典滤波器将不起作用。这些滤波器按滤波的频段可分为高通、低通及带通滤波器,根据设计滤波器的思想可以把滤波器分为巴特沃斯滤波器、贝塞尔滤波器、椭圆滤波器及切比雪夫滤波器等。

此外,传统的滤波器降噪方法的不足在于使信号变换后熵增加,无法刻画信号的非平稳性并且无法得到信号的相关性。为了克服上述缺点,采用小波变换来解决信号降噪的方法应用越来越广泛。但是,由于小波变换数学理论较深,对于初学者而言,使用传统的C语言等编程方法,编程难度很大。本文采用LabVIEW 和Matlab 混合编程的方法,将LabVIEW 完美的图形编程技术和Matlab强大的数学解算功能结合起来,实现了小波降噪的数学建模和信号图像显示。

1 小波变换原理

小波变换的理论主要包括连续小波变换、离散小波变换和多分辨分析。

1.1 连续小波变换

按如下方式平移和伸缩而生成的函数族 {ψ a,b } 叫分析小波或连续小波(Continue Wavelet Transform,CWT),ψ 称为基本小波。

任意函数在某一尺度a 、平移点b 上的小波变换系数,实质上表征的是在b 位置处,时间段2aΔψ 上包含在中心频率为ω* a ,带宽为2Δψ - /a 频窗内的频率分量大小,随着尺度a 的变化,对应窗口中心频率为ω* a 及窗口宽度2Δψ - /a 也发生变化。


上一页12345下一页
?? ?? ??


打开微信“扫一扫”,打开网页后点击屏幕右上角分享按钮

1.扫描左侧二维码
2.点击右上角的分享按钮
3.选择分享给朋友
?? ??

相关文章

我来评论
美国的游客
美国的游客 ??? (您将以游客身份发表,请登录 | 注册)
?
有问题请反馈