EDN China > 设计实例 > 消费电子设计 > 视频/图形处理 > 正文
? 2016博客大赛-不限主题,寻找电子导师,大奖升级??

基于CUDA技术的视频显示系统的设计与开发

/?? 2013年12月26日 ?? 收藏1
0 引言

近年来随着大屏幕显示技术在各领域应用的逐步深入,市场已经不满足单一的影片展示,更多的转向了对互动性更强的计算机桌面环境的融合显示上来。而目前市场上主流的桌面融合系统,多采用分屏器等硬件辅助设备,成本高,性能差。

统一计算架构(Compute Unified Device Architect-ure,CUDA)是英伟达(NVIDIA)公司近年来推出的通用并行计算架构,它以高性能显卡GPU为硬件依托,采用CPU+GPU的混合计算极大的提高了大规模的图形数据实时处理效率。本文设计的视频显示系统,采用CUDA开发方式实现了计算机桌面图片的分割计算、贝塞尔曲线拟合、以及融合图像计算等三方面处理。实时性高,画面数据计算理论上精确值14像素,精度好。

1 系统框架设计

图像处理的本质是大规模矩阵运算,特别适合并行处理。但CPU通用计算很难利用该特性。与此相反,GPU在并行数据运算上具有强大的计算能力,特别适合作运算符相同而运算数据不同的运算,当执行具有高运算密度的多数据元素时,内存访问的延迟可以被忽略。CUDA编程模型将CPU作为主机(Host),GPU作为协处理器(Coprocessor)或设备(Device),一个系统中可以存在多个设备。在这个模型中,CPU与GPU共同工作,CPU负责逻辑性强的事务处理和串行计算,GPU则专注于执行高度线程化的并行处理任务。

本系统以NVIDIA GeForce GTX470搭建的计算平台为运行环境,利用显卡的多头输出特性,连接多台投影仪组成拼接屏幕阵列,不需要额外增加其他硬件设备。由于桌面融合显示系统要处理的图像数据大、实时性高的特点,所以本系统的软件设计上则广泛使用了多CPU并行编程技术和CUDA并行计算技术,针对每一个投影设备的图像处理和显示,系统会分配一个专门的线程来处理。该线程会对应固定的CPU和固定的GPU计算核心,保证多投影设备完全并行处理,从而避免了其他系统由于显示设备增多,处理数据变大而造成的性能下降。CUDA架构如图1所示。


上一页123下一页
?? ?? ??


打开微信“扫一扫”,打开网页后点击屏幕右上角分享按钮

1.扫描左侧二维码
2.点击右上角的分享按钮
3.选择分享给朋友
?? ??

相关文章

我来评论
美国的游客
美国的游客 ??? (您将以游客身份发表,请登录 | 注册)
?
有问题请反馈