EDN China > 技术文章 > 电源技术 > 太阳能/光伏 > 正文
? 2016博客大赛-不限主题,寻找电子导师,大奖升级??

外延薄膜硅太阳能电池的研究分析

/?? 2013年12月20日 ?? 收藏0
第一种技术是制作外延(epitaxial)薄膜太阳能电池,从高掺杂的晶体硅片(例如优级冶金硅或废料)开始,然后利用化学气相淀积(CVD)方法来淀积外延层。除成本和可用性等优势以外,这种方法还可以使硅太阳能电池从基于硅片的技术逐渐过渡到薄膜技术。由于具有与传统体硅工艺类似的工艺过程,与其它的薄膜技术相比,这种技术更容易在现有工艺线上实现。

第二种是基于层转移(layer transfer)的薄膜太阳能电池技术,它在多孔硅薄膜上外延淀积单晶硅层,从而可以在工艺中的某一点将单晶硅层从衬底上分离下来。这种技术的思路是多次重复利用母衬底,从而使每个太阳能电池的最终硅片成本很低。正在研究中的一种有趣的选择方案是在外延之前就分离出多孔硅薄膜,并尝试无支撑薄膜工艺的可能性。

最后一种是薄膜多晶硅太阳能电池,即将一层厚度只有几微米的晶体硅淀积在便宜的异质衬底上,比如陶瓷(图2)或高温玻璃等。晶粒尺寸在1-100mm之间的多晶硅薄膜是一种很好的选择。我们已经证实,利用非晶硅的铝诱导晶化可以获得高质量的多晶硅太阳能电池。这种工艺可以获得平均晶粒尺寸约为5 mm的很薄的多晶硅层。接着利用生长速率超过1 mm/min的高温CVD技术,将种子层外延生长成几微米厚的吸收层,衬底为陶瓷氧化铝或玻璃陶瓷。选择热CVD是因为它的生长速率高,而且可以获得高质量的晶体。然而这样的选择却限定了只能使用陶瓷等耐热衬底材料。这项技术还不像其它薄膜技术那样成熟,但已经表现出使成本降低的巨大潜力。

采用薄膜PV技术已经能够提高太阳能电池的效率或简化其工艺,并将降低其成本。但目前还没有人能够同时将这两方面结合起来。然而,最近的一些研究结果已经在正确的方向上又前进了必要的一步。

外延电池的改进

外延薄膜硅太阳能电池的效率不算太高(半工业化丝网印刷技术制作的电池约为12%),这限制了光伏业界对这种电池类型的关注程度。它可以获得与体硅太阳能电池相当的开路电压和填充因子(单晶硅太阳能电池为±77.8%)。然而,短路电流(Jsc )受限于薄的光学有源层(<20mm)。穿透外延层的光会被高掺杂、低质量的衬底收集而损失掉。因此,这两种太阳能电池技术之间的短路电流相差7 mA/cm2并不少见。体硅太阳能电池的Jsc典型值约为33 mA/cm2,而外延薄膜电池的平均值约为26 mA/cm2。

然而,两项独立的电池级开发成果已经使这种状况有所改善2。通过增大薄的有源层内的光程长度,我们报导的丝网印刷外延电池的Jsc达到30 mA/cm2,效率达到13.8%。

对这些结果有贡献的第一项改进是采用氟基等离子体粗糙处理得到的表面光散射(图3)。理想情况下,这种经过粗糙处理的有源层表面会使光100%地漫射 (即Lambertian折射器)。这使得光子能够以60°的平均角穿过有源层,使光程长度增大为原来的2倍。换而言之,使20 mm薄层的光学表现相当于40mm厚的有源层。我们发现,通过去除仅仅1.75 mm的硅就可以获得这种全光散射。等离子体粗糙处理的优点很多,包括更低的反射(从粗糙处理之前的35%下降到10%)、斜入射光耦合和更低的接触电阻 (因为硅衬底和银电极之间的接触面积更大)。我们观察到1.0-1.5的Jsc绝对增长,而效率增加0.5-1.0%。

第二项改进是通过引入多孔硅布拉格反射器来进行内部光捕获。为了降低长波长的光进入到衬底的透射,在衬底和外延层之间的界面上放置一个中间反射器。这样一来,到达该界面的光子就会被反射而第二次穿过有源层。由于光在进入电池的瞬间就开始漫射(这是由等离体粗糙处理的Lambertian特性所决定的),很大比例的光子会以大于逃逸角的角度打在前表面上。因此,大部分的光子会再次向内反射而第三次穿过有源层。这种情况不断地重复,使得光子有可能多次穿越外延层。

在实践中,这种反射器是通过电化学生长孔隙率高低交替变化的多孔硅叠层(多重布拉格反射器)来制作的。

延生长有源层的过程中,多孔硅叠层自动转变成包含不同尺寸大小的孔洞的交替层(图4)。这种结构已经被证明是一种理想的基于构造干涉的反射器。对于一个 15层的多孔硅叠层,计算表明光程长度增大为原来的14倍。也就是说,15 mm薄层的光学表现相当于厚度为210mm的硅层。

为了验证这两种改进方法的有效性,在三种不同的载体衬底上制作表面积为18 cm2的外延电池。在作为验证概念的单晶硅衬底上,电池的效率提高到13.8%,填充因子达到77.8%,这表明使用重组织多孔硅叠层不存在电导问题。而在低质量的硅衬底上获得的实验结果略低,效率是13.5%,填充因子为77.7%。对于多孔硅而言,在多晶衬底上生长的外延层质量较差,这个事实可以解释性能下降的原因。目前正在优化工艺,在不久的将来有望获得更高效率的增益。


上一页12下一页
?? ?? ??


打开微信“扫一扫”,打开网页后点击屏幕右上角分享按钮

1.扫描左侧二维码
2.点击右上角的分享按钮
3.选择分享给朋友
?? ??

相关文章

我来评论
美国的游客
美国的游客 ??? (您将以游客身份发表,请登录 | 注册)
?
有问题请反馈