EDN China > 设计实例 > 电源技术 > AC-DC/DC-DC转换 > 正文
? 2016博客大赛-不限主题,寻找电子导师,大奖升级??

(多图) 交错并联的低压大电流DC-DC变换器设计

2012年02月07日 ?? 收藏0
1 引言

近年来,随着计算机微处理器的输入电压要求越来越低,低压大电流DC-DC变换器的研究得到了许多研究者的重视,各种拓扑结构层出不穷,同步整流技术、多重多相技术、磁集成技术等也都应用于这个领域。笔者提出了一种交错并联的低压大电流DC-DC变换器,它的一次侧采用对称半桥结构,而二次侧采用倍流整流结构。采用这种结构可以极大地减小滤波电容上的电流纹波,从而极大地减小了滤波电感的大小与整个DC-DC变换器的尺寸。这种变换器运行于48V的输入电压和100kHz的开关频率的环境。

2 倍流整流的低压大电流DC-DC变换器的结构分析

倍流整流低压大电流DC-DC变换器的电路原理图如图1所示,一次侧采用对称半桥结构,二次侧采用倍流整流结构,在S1导通时SR1必须截止,L1充电;在S2导通时SR2必须截止,L2充电,这样滤波电感电流就会在滤波电容上移项叠加。图2给出了开关控制策略。

倍流整流的低压大电流DC-DC变换器的电路原理图
图1 倍流整流的低压大电流DC-DC变换器的电路原理图

开关的控制策略
图2 开关的控制策略

通过以上分析可以看出,倍流整流结构的二次侧2个滤波电感电流在滤波电容上相互叠加,从而使得输出电流纹波变得相当小。

结构中的同步整流器均按外加信号驱动处理,使控制变得很复杂,但在这种半桥-倍流拓扑结构中使用简单的自驱动方式很困难,因为,在这种结构中,如果直接从电路中取合适的点作为同步整流器的驱动信号,在死区时间内当这个驱动信号为零时,同步整流器就会截止。为了在半桥-倍流拓扑结构中使用自驱动方式,就必须使用到辅助绕组。

以单个半桥-倍流拓扑结构为例,见图3,VSEC为变压器的二次侧电压,Vgs为由辅助绕组获得的同步整流器的驱动电压,可以看出即使在死区的时间内,同步整流器的驱动电压也不可能为零,保证了自驱动方式在这种拓扑结构中的应用。

自驱动同步整流器电路及波形图
图3 自驱动同步整流器电路及波形图

另外,由于在大电流的情况下MOSFET导通压降将增大,从而产生较大的导通损耗,为此应采用多个MOSFET并联方法来减小损耗。

3 交错并联低压大电流DC-DC变换器

3.1 电路原理图

综上所述,倍流整流低压大电流DC-DC变换器具有很好的性能,在此基础上引入交错并联技术,构成一种新的结构,称为并联低压大电流DC-DC变换器,可以进一步减小输出电流纹波。

图4为交错并联低压大电流DC-DC变换器的电路原理图(以最简单的2个倍流整流交错并联为例)。

交错并联低压大电流DC-DC变换器的电路原理图
图4 交错并联低压大电流DC-DC变换器的电路原理图

3.2 变换器的开关控制策略

交错并联低压大电流DC-DC变换器的开关控制策略见图5。

交错并联低压大电流DC-DC变换器的开关控制策略
图5 交错并联低压大电流DC-DC变换器的开关控制策略

3.3 交错并联低压大电流DC-DC变换器性能

首先这种拓扑结构最大的优点是变压器原边的结构简化,控制变得很简单。其次,这种方法的实现必须采用同步整流电路,因为交错并联电路的实现要求变压器副边上下电位轮流为正,在一个时间段内有且只有一个为正电位,其余都为零电位。但在这种拓扑结构中,由于2个变压器的原边串联在一起,而副边是并联的,这样如果用肖特基二极管作整流器,那么输入电压将在2个变压器原边上分压,而肖特基二极管又没有选通的功能,这样变压器二次侧的波形将是完全对称的,上下2个整流电路的电流完全重合,达不到电流交错并联的目的。

这样,应用同步整流器来完成这个功能,同时利用MOSFET的双向导电特性,因为同步整流管的漏源电流是分布在坐标横轴两侧的。这种结构的过程详细分析如下:

1)S1导通,S2截止;S3截止,S4,S5,S6均导通。由于S4,S5,S6的导通,第一变压器副边绕组下端为零电位,第二变压器副边绕组上、下端均为零电位,电感L1上电流上升,L2,L3,L4上电流下降。

公式

2)S2导通,S1截止;S4截止,S3,S5,S6均导通。由于S3,S5,S6的导通,第一变压器副边绕组上端为零电位,第二变压器副边绕组上、下端均为零电位,电感L2上电流上升,L1,L3,L4上电流下降。

公式

3)S1导通,S2截止;S5截止,S3,S4,S6均导通。由于S3,S4,S6的导通,第二变压器副边绕组下端为零电位,第一变压器副边绕组上、下端均为零电位,电感L3上电流上升,L1,L2,L4上电流下降。

公式

4)S2导通,S1截止;S6截止,S3,S4,S5均导通。由于S3,S4,S5的导通,第二变压器副边绕组上端为零电位,第一变压器副边绕组上、下端均为零电位,电感L4上电流上升,L1,L2,L3上电流下降。

公式

以上各式均忽略整流器的电压降,且VSEC为变压器二次侧的电压值。

根据以上分析可知,应用同步整流器,通过变压器原边串联而副边并联的方法,可以实现这种交错并联半桥-倍流拓扑结构。它的优点主要有以下几个方面:

1)有效地简化了拓扑结构和控制策略。

2)在频率保持不变的情况下,如果纹波的峰-峰值一定,则这种结构可以有效减小滤波电感的值,从而加快整个变换器的动态响应时间。

3)交错并联的半桥-倍流拓扑结构与非交错并联的半桥-倍流拓扑结构相比,一次侧和二次侧的导通损耗相差不多,但由于采用交错并联技术,二次侧的开关频率是原来的一半,相应的开关损耗也是原来的一半。由于变换器的开关损耗在整个损耗统计中占很大的比例,因此,交错并联技术可以极大地提高变换器的效率。


上一页12下一页
?? ?? ??


打开微信“扫一扫”,打开网页后点击屏幕右上角分享按钮

1.扫描左侧二维码
2.点击右上角的分享按钮
3.选择分享给朋友
?? ??

整流? 滤波电感? 变换器?

相关文章

我来评论
美国的游客
美国的游客 ??? (您将以游客身份发表,请登录 | 注册)
?
有问题请反馈