EDN China > 设计实例 > 微处理器与DSP > DSP应用 > 正文
? 2016博客大赛-不限主题,寻找电子导师,大奖升级??

(多图) 自适应滤波器的算法研究及DSP仿真实现

辽宁工程技术大学 宋立业 王景胜 彭继慎?? 2009年05月18日 ?? 收藏0

  0 引 言

  滤波是电子信息处理领域的一种最基本而又极其重要的技术。在有用信号的传输过程中,通常会受到噪声或干扰的污染。利用滤波技术可以从复杂的信号中提取所需要的信号,同时抑制噪声或干扰信号,以便更有效地利用原始信号。滤波器实际上是一种选频系统,它对某些频率的信号予以很小的衰减,让该部分信号顺利通过;而对其他不需要的频率信号则予以很大的衰减,尽可能阻止这些信号通过。在电子系统中滤波器是一种基本的单元电路,使用很多,技术也较为复杂,有时滤波器的优劣直接决定产品的性能,所以很多国家非常重视滤波器的理论研究和产品开发。

  1 自适应滤波器简介

  自适应滤波器属于现代滤波器的范畴,自适应滤波器是相对固定滤波器而言的,固定滤波器属于经典滤波器,它滤波的频率是固定的,自适应滤波器滤波的频率则是自动适应输入信号而变化的,所以其适用范围更广。在没有任何关于信号和噪声的先验知识的条件下,自适应滤波器利用前一时刻已获得的滤波器参数来自动调节现时刻的滤波器参数,以适应信号和噪声未知或随机变化的统计特性,从而实现最优滤波。所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。自适应滤波器实质上就是一种能调节其自身传输特性以达到最优化的维纳滤波器。

  2 自适应滤波原理

  自适应滤波器的特性变化是由自适应算法通过调整滤波器系数来实现的。一般而言,自适应滤波器由两部分组成,一是滤波器结构,二是调整滤波器系数的自适应算法。自适应滤波器的结构采用FIR或IIR结构均可,由于IIR滤波器存在稳定性问题,因此一般采用FIR滤波器作为自适应滤波器的结构。图1给出了自适应滤波器的一般结构。

自适应滤波器的一般结构

  图1为自适应滤波器结构的一般形式,图中x(n)为输入信号,通过参数可调的数字滤波器后产生输出信号y(n),将输出信号y(n)与标准信号(或者为期望信号)d(n)进行比较,得到误差信号e(n)。e(n)和x(n)通过自适应算法对滤波器的参数进行调整,调整的目的使得误差信号e(n)最小。

  自适应滤波器设计中最常用的是FIR横向型结构。图2是横向型滤波器的结构示意图。

横向型滤波器的结构示意图

  其中:x(n)为自适应滤波器的输入;w(n)为自适应滤波器的冲激响应:w(n)={w(O),w(1),…,w(N-1)};y(n)为自适应

公式

  3 自适应滤波算法

  自适应滤波器除了包括一个按照某种结构设计的滤波器,还有一套自适应的算法。自适应算法是根据某种判断来设计的。自适应滤波器的算法主要是以各种判据条件作为推算基础的。通常有两种判据条件:最小均方误差判据和最小二乘法判据。LMS算法是以最小均方误差为判据的最典型的算法,也是应用最广泛的一种算法。

  最小均方误差(Least Mean Square,LMS)算法是一种易于实现、性能稳健、应用广泛的算法。所有的滤波器系数调整算法都是设法使y(n)接近d(n),所不同的只是对于这种接近的评价标准不同。LMS算法的目标是通过调整系数,使输出误差序列e(n)=d(n)-y(n)的均方值最小化,并且根据这个判据来修改权系数,该算法因此而得名。误差序列的均方值又叫“均方误差”(Mean Sqluare Error,MSE)。

  理想信号d(n)与滤波器输出y(n)之差e(n)的期望值最小,并且根据这个判据来修改权系数wi(n)。由此产生的算法称为LMS。均方误差ε表示为:

公式

  对于横向结构的滤波器,代入y(n)的表达式:

公式

  其中:R=E[X(n)XT(n)]为N×N的自相关矩阵,它是输入信号采样值间的相关性矩阵。P=E[d(n)X(n)]为N×1互相关矢量,代表理想信号d(n)与输入矢量的相关性。在均方误差ε达到最小时,得到最佳权系数公式它应满足下式:

公式

  这是一个线形方程组,如果R矩阵为满秩的,R-1存在,可得到权系数的最佳值满足:W*=R-1p。用完整的矩阵表示为:

公式

  显然φx(m)=E[x(n)x(n-m)]为x(n)的自相关值,φxd(R)=E[x(n)d(n一k)]为x(n)与d(n)互相关值。在有些应用中,把输入信号的采样值分成相同的一段(每段称为一帧),再求出R,P的估计值得到每帧的最佳权系数。这种方法称为块对块自适应算法。如语音信号的线性预测编码LPC就是把语音信号分成帧进行处理的。R,P的计算,要求出期望值E,在现实运算中不容易实现,为此可通过下式进行估计:

公式


上一页12下一页
?? ?? ??


打开微信“扫一扫”,打开网页后点击屏幕右上角分享按钮

1.扫描左侧二维码
2.点击右上角的分享按钮
3.选择分享给朋友
?? ??

滤波器? DSP? 仿真? CCS?

相关文章

我来评论
美国的游客
美国的游客 ??? (您将以游客身份发表,请登录 | 注册)
?
有问题请反馈