EDN China > 技术文章 > 电源技术 > 数字电源 > 正文
? 2016博客大赛-不限主题,寻找电子导师,大奖升级??

(多图) 嵌入式便携设备中电源管理的分析与研究

来源:单片机及嵌入式系统应用/王志锐 张晓林等?? 2007年01月30日 ?? 收藏0

  1.3 Idle状态下的电源管理方法

  系统设备完成任务后,将处于Idle状态的系统设备进行状态转换是该状态下电源管理的主要方法。主流策略有Timeout策略、基于预测的管理策略和基于随机的管理策略。其中,Timeout策略最简单易行。该策略流程如图2所示。

Timeout策略流程

  图2 Timeout策略流程

  系统完成所有任务后,处于Idle状态的持续时间超过该阈值时,电源管理模块将系统转换至Sleep状态,直到有新任务请求到达时再唤醒系统。通过这种方式达到降低系统设备功耗的目的。该时间间隔可由系统提供的计时模块设定,而时间阈值Tth的设定由下式确定:

??????? 嵌入式便携设备中电源管理的分析与研究图示

  式中: Etran是已知的系统从Idle状态到Sleep状态再到唤醒,共两次状态转换所消耗的总能量;PI是系统处于Idle状态所消耗的功率。

  图3为Timeout策略中两种性能的损耗情况。图中,E为Running(工作)状态时间,I为Idle状态时间,F为时间阈值,D为状态转换时间,S为休眠状态时间,W为系统设备唤醒时间。该策略简单,但缺点也很明显。如图3所示,当I>F+D时,等待时间阈值的设定容易损失更多的降功机会,同时因为系统状态唤醒转换的耗时耗能,必然引起任务等待延时;甚至当F+D>I>F时,延时会大于唤醒耗时,这将造成很大的性能损失;同时任务执行时间的延时,还会直接导致下一个Idle状态持续时间的缩短。这样基于对任务完成后Idle状态时间和下一个任务来临时间的预测的电源管理策略就显得很有效率。

Timeout策略中两种性能的损耗情况

  图3 Timeout策略中两种性能的损耗情况

  基于预测的电源管理策略是根据系统信息(包括历史信息和用户习惯等),对系统将要处于Idle状态的持续时间Tpred进行预测。比较Tpred和Tth,当Tpred≥Tth时在任务完成后立即将系统转换到休眠状态;否则,继续维持系统Idle状态。预测时刻和Idle状态中的预测间隔由具体策略决定。

  基于预测的电源管理策略的核心是,使用何种算法来利用系统反馈信息去更新算法的预测根据。要做出符合系统设备用户使用习惯和任务请求的准确预测,就需要对用户习惯的认识程度不断加深,并对系统任务信息和策略历史信息有较全面的统计。自适应学习树ALT(Adaptive Learning Tree)策略、PBALT(Probability?睟ased ALT)策略,以及基于AR(Auto?睷egressive)模型的预测控制反馈PCF(Predictive Control Feedback)预测策略等都是优化过的预测策略。PBALT策略利用概率反映准确率,加强了分树之间的关联性和ALT方法的学习能力;但这种策略的边界条件限制制约了它的应用范围。PCF预测策略的自适应性是通过其反馈模块来控制的;但预测策略本身在针对非平稳状态的任务请求时效率不稳定,同时,预测策略基本只考虑系统有一个工作模式,这些都限制了它的应用。

  基于随机的电源管理策略是一种具有不确定性的优化策略,这种不确定性源于系统模型的抽象性。基于随机的电源管理策略不仅指定何时进行状态转换,而且还指定转换到哪一工作模式,因此适用于多工作模式的系统设备。它将动态电源管理看作是随机最优化问题,而不像基于预测的电源管理策略那样通过预测的方法消除任务请求的不确定性。基于CTMDP(连续时间马尔可夫决定过程)的随机决定动态电源管理策略给出了系统电源管理的一个最优化的决定,但这种最优化是在一个具有不确定性的模型基础上的,即这种算法所得到的最优化的决策只能得到系统的性能和功耗的一个预期值,并不能保证在特定的系统设备中适用,而且马尔可夫过程数学模型的建立也是需要仔细分析的。

  2 基于最高决策的电源管理策略

  由以上对系统电源管理策略的分析可知,系统设备的电源管理贯穿系统设备的各个状态,因此应提出一种电源管理方法,将多种电源管理策略结合起来对系统功耗进行协同管理。该电源管理构架中有一个策略集合,每个策略都有自己的优先级,按需求使用各个策略来进行多策略电源管理。但这种构架也存在问题:首先复杂系统的任务很可能多种多样,而且电源管理策略针对不同的任务其降功效率也不同,仅用电源管理策略的优先级来决定使用电源管理策略,缺乏针对性;此外各策略信息应该在执行系统任务的过程中得到统计,并自适应地改变其优先级。

  这里提出一个基于最高决策管理模块的电源管理构架。这种系统设备电源管理构架包括了最高决策模块、任务信息统计模块、策略集合模块、信息检测模块和控制模块5个主要部分,如图4所示。

基于最高决策的降功管理模块构架

  图4 基于最高决策的降功管理模块构架

  信息检测模块: 用于检测系统状态信息和新到的任务信息。

  任务信息统计模块: 用于统计系统设备所执行的任务信息,并解释成准确的任务信息参数。

  策略集合模块:通过对系统状态和任务信息等进行动态的统计,计算电源管理策略的效率,更新电源管理策略信息并解释成准确的电源管理策略参数。

  最高决策模块:根据接收的任务和系统状态信息,在策略集合中选择最优的电源管理策略或者电源管理策略组,通过控制模块对系统设备进行电源管理。

  任务信息是实时接收的;系统状态信息是在每次系统状态改变时,由信息检测模块提供给最高决策模块的;电源管理策略的信息指计算后的电源管理效率,以及电源管理策略适用的系统状态和任务。例如,当新任务到达后,必然有一种预测策略对此任务完成后的Idle状态持续时间的预测效率最高。电源管理策略控制期间,每一次决策的成功或失败都会改变该电源管理策略的优先加权参数。这样最高决策模块根据系统状态和任务信息,决定采用最优的电源管理策略或者电源管理策略组,使系统设备的各个部分得到最优的电源管理。

  3 小结

  当今便携设备中电源管理的核心是电源管理策略,本文中提出的基于最高决策的电源管理构架的关键是预先选定电源管理策略集合。关于电源管理策略,有两方面问题需要继续探讨和研究:第一,权衡系统设备工作性能和功耗。电源管理策略进行系统功耗管理过程中,虽然电源管理策略尽量避免延时,但是这种延时又不可避免。系统使用者对于性能和功耗的权衡直接影响电源管理策略的选择,以及电源管理策略中具体参数的预设。第二,权衡电源管理效果和复杂度。策略集合和任务信息集合的尺寸越大,统计信息越完备,电源管理策略的决策就越准确,但同时电源管理模块的复杂度也增加了,这直接关系到其工程实现的复杂程度。另外,建立电源管理策略标准,提供电源管理策略包和任务信息包,规范系统状态和任务信息,也将有利于便携设备电源管理技术的发展。

  参考文献

  [1] 刘向文. 基于调度能耗任务截止期的动态电源管理技术. 机电工程技术,2005,34(7):7981.
  [2] Ramanathan D, Irani S, Gupta R. An Analysis of System Level Power Management Algorithms and Their Effects on Latency. IEEE Transactions on Computer Aided Design, 2002,21(3): 291305.
  [3] Yao F, Demers A, shenker S. A Scheduling Model for Reduced CPU Energy. In IEEE Syposium on Foundations of Computer Science, 1995: 374382.
  [4] Bansal N, Kimbrel T, Pruhs K. Dynamic Speed Scaling to Manage Energy and Temperature. In IEEE Syposium on Foundations of Computer Science, 2004:520??529.
  [5] 卜爱国. PBALT动态电源管理策略. 电路与系统学报,2003,10(4):5660.
  [6] 卜爱国. 基于AR模型的PCF动态电源管理预测策略. 应用科学学报,2005,23(5),483488.


上一页12下一页
?? ?? ??


打开微信“扫一扫”,打开网页后点击屏幕右上角分享按钮

1.扫描左侧二维码
2.点击右上角的分享按钮
3.选择分享给朋友
?? ??

电源管理? 功率消耗? 嵌入式?

相关文章

我来评论
美国的游客
美国的游客 ??? (您将以游客身份发表,请登录 | 注册)
?
有问题请反馈